Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant.
نویسندگان
چکیده
The Pseudomonas aeruginosa mutant Z61 has been shown to be highly supersusceptible to a wide range of antibiotics, including beta-lactams, aminoglycosides, rifampin, tetracycline, and chloramphenicol (W. Zimmerman, Int. J. Clin. Pharmacol. Biopharm. 17:131-134, 1979). Spontaneous revertants were isolated, using gentamicin or carbenicillin as selective agents, and shown to have two patterns of susceptibility to a group of 12 antibiotics. Partial revertants had 2- to 10-fold greater resistance to these antibiotics than mutant Z61, whereas full revertants had antibiotic susceptibilities indistinguishable from those of the wild-type strain K799, from which mutant Z61 had been derived. Uptake of a chromogenic beta-lactam nitrocefin was studied in both uninduced and induced cells of all strains by measuring the steady-state rate of nitrocefin hydrolysis by the inducible, periplasmic beta-lactamase in both whole and broken cells. This demonstrated that outer membrane permeability decreased as antibiotic resistance increased in the series mutant Z61, partial revertants, wild type, and full revertants. The data were consistent with the idea of low outer membrane permeability being caused by a low proportion of open functional porins in the outer membrane as the reason for the high natural antibiotic resistance of wild-type P, aeruginosa strains. In addition, it was observed that levels of benzylpenicillin below the minimal inhibitory concentration for mutant Z61 failed to induce beta-lactamase production. The possibility that this was related to the observed increase in outer membrane permeability is discussed. Preliminary evidence is presented that the pore-forming outer membrane porin protein F is not altered in mutant Z61.
منابع مشابه
Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant.
A mutant of Pseudomonas aeruginosa severely deficient in outer membrane protein F levels was isolated by screening heavily mutagenized strains for membrane protein alterations on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. To provide a basis for phenotypic comparison, three independent spontaneous revertants with normal protein F levels were isolated. Neither the protein F-defic...
متن کاملInduction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa.
Pseudomonas aeruginosa is an important opportunistic pathogen that causes infections that can be extremely difficult to treat due to its high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It is demonstrated here that the psrA gene, encoding a transcriptional regulator, was upregulated in response to subinhibitory concentrations of...
متن کاملChemical and chromatographic analysis of lipopolysaccharide from an antibiotic-supersusceptible mutant of Pseudomonas aeruginosa.
Lipopolysaccharides extracted from Pseudomonas aeruginosa strain K799 and its antibiotic-supersusceptible derivative Z61 were analyzed chemically and chromatographically. The side-chain polysaccharides purified by gel exclusion chromatography were compositionally identical, being composed of fucosamine (2-amino-2,6-dideoxygalactose), quinovosamine (2-amino-2,6-dideoxyglucose), and an unidentifi...
متن کاملProcedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains.
Lipopolysaccharide (LPS) is a major component of the outer membrane of gram-negative bacteria. It is now well established that within a single organism, size heterogeneity of this molecule can exist. We have developed a LPS isolation procedure which is effective in extracting both smooth and rough LPS in high yields (51 to 81% of the LPS present in whole cells as quantitated by using hydroxy fa...
متن کاملInsertion mutagenesis and membrane topology model of the Pseudomonas aeruginosa outer membrane protein OprM.
Pseudomonas aeruginosa OprM is a protein involved in multiple-antibiotic resistance as the outer membrane component for the MexA-MexB-OprM efflux system. Planar lipid bilayer experiments showed that OprM had channel-forming activity with an average single-channel conductance of only about 80 pS in 1 M KCl. The gene encoding OprM was subjected to insertion mutagenesis by cloning of a foreign epi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 21 2 شماره
صفحات -
تاریخ انتشار 1982